4. Integration by Parts
Recall: \(\displaystyle \int u\,dv=u\,v-\int v\,du\) where \(du=\dfrac{du}{dx}\,dx\) and \(dv=\dfrac{dv}{dx}\,dx\)
c. Definite Integrals
The integration by parts formula also has a version for definite integrals:
\(\displaystyle \int_a^b u\,dv=\left[\rule{0pt}{10pt}u\,v\right]_a^b-\int_a^b v\,du\)
where
\(du=\dfrac{du}{dx}\,dx\) and \(dv=\dfrac{dv}{dx}\,dx\)
Compute\(\displaystyle \int_0^1 3x^2\arctan x\,dx\).
We apply integration by parts with \[\begin{array}{ll} u=\arctan x & dv=3x^2\,dx \\ du=\dfrac{1}{1+x^2}\,dx \quad & v=x^3 \end{array}\] So: \[\begin{aligned} \int_0^1 3x^2\arctan x\,dx &=\left[x^3\arctan x\right]_0^1-\int_0^1 \dfrac{x^3}{1+x^2}\,dx \\ &=1^3\arctan 1-0^3\arctan 0-\int_0^1 \dfrac{x^3}{1+x^2}\,dx \end{aligned}\] For the integrated part, recall \(\arctan 1=\dfrac{\pi}{4}\) and \(\arctan 0=0\). For the remaining integral, we substitute \(z=1+x^2\). Then \(dz=2x\,dx\) and so \(x\,dx=\dfrac{1}{2}\,dz\) and \(x^2=z-1\). We also change limits. Thus: \[\begin{aligned} \int_0^1 3x^2\arctan x\,dx &=\dfrac{\pi}{4}-\int_1^2 \dfrac{z-1}{z}\dfrac{1}{2}\,dz\ \\ &=\dfrac{\pi}{4}-\dfrac{1}{2}\int_1^2 \left(1-\dfrac{1}{z}\right)\,dz \\ &=\dfrac{\pi}{4}-\dfrac{1}{2}\left[\dfrac{}{}z-\ln|z|\right]_1^2 \\ &=\dfrac{\pi}{4}-\dfrac{1}{2}\left[2-\ln(2)\right]+\dfrac{1}{2}[1] \\ &=\dfrac{\pi}{4}-\dfrac{1}{2}+\dfrac{1}{2}\ln(2) \end{aligned}\] Of course, you can always compute a definite integral by first finding the indefinite integral and then evaluating at the limits. \[\begin{aligned} \int 3x^2\arctan x\,dx &=x^3\arctan x-\dfrac{1}{2}(1+x^2)+\dfrac{1}{2}\ln(1+x^2)+C \\ \int_0^1 3x^2\arctan x\,dx &=\left[x^3\arctan x-\dfrac{1}{2}x^2+\dfrac{1}{2}\ln(1+x^2)\right]_0^1 \\ &=\dfrac{\pi}{4}-\dfrac{1}{2}+\dfrac{1}{2}\ln(2) \end{aligned}\]
The benefit of doing the indefinite integral first is that we can check it before going on to the definite integral.
Compute \(\displaystyle \int_{-1}^3 xe^{-4x}\,dx\).
\(\displaystyle \int_{-1}^3 xe^{-4x}\,dx =-\,\dfrac{13}{16}e^{-12}-\dfrac{3}{16}e^4\)
We select the parts: \[\begin{array}{ll} u=x & dv=e^{-4x}\,dx \\ du=\,dx \quad & v=-\,\dfrac{1}{4}e^{-4x} \end{array}\] We compute: \[\begin{aligned} \int xe^{-4x}\,dx &=-\,\dfrac{1}{4}xe^{-4x}+\dfrac{1}{4}\int e^{-4x}\,dx \\ &=-\,\dfrac{1}{4}xe^{-4x}-\dfrac{1}{16}e^{-4x}+C \\ \int_{-1}^{3} xe^{-4x}\,dx &=\left[-\,\dfrac{1}{4}xe^{-4x}-\dfrac{1}{16}e^{-4x}\right]_{-1}^{3} \\ &=-\,\dfrac{13}{16}e^{-12}-\dfrac{3}{16}e^4 \end{aligned}\]
We can check the indefinite integral by differentiating. If \(f=-\,\dfrac{1}{4}xe^{-4x}-\dfrac{1}{16}e^{-4x}\), then \[ f'=-\,\dfrac{1}{4}e^{-4x}+xe^{-4x}+\dfrac{1}{4}e^{-4x} =xe^{-4x} \]
Compute \(\displaystyle \int_0^1 xe^{(x-1)}\,dx\).
\(0\)
\(e\)
\(e^{-1}\)
\(1\)
A. Incorrect. The correct selection of parts is \[\begin{array}{ll} u=x & dv=e^{(x-1)}dx \\ du=dx \quad & v=e^{(x-1)} \end{array}\] Try it.
B. Incorrect. The correct selection of parts is \[\begin{array}{ll} u=x & dv=e^{(x-1)}dx \\ du=dx \quad & v=e^{(x-1)} \end{array}\] Then \[ \int_0^1 xe^{(x-1)}dx =\left[xe^{(x-1)}\right]_0^1-\int_0^1 e^{(x-1)}\,dx \] Finish this.
C. Correct. The correct selection of parts is \[\begin{array}{ll} u=x & dv=e^{(x-1)}dx \\ du=dx \quad & v=e^{(x-1)} \end{array}\] Then \[\begin{aligned} \int_0^1 xe^{(x-1)}dx =\left[xe^{(x-1)}\right]_0^1-\int_0^1 e^{(x-1)}\,dx \\ =1e^0-0e^{-1}-\left[e^{(x-1)}\right]_0^1 \\ =1-\left(e^0-e^{-1}\right)=e^{-1} \end{aligned}\] Good work!
D. Sorry, that's not right. The correct selection of parts is \[\begin{array}{ll} u=x & dv=e^{(x-1)}dx \\ du=dx \quad & v=e^{(x-1)} \end{array}\] Then \[ \int_0^1 xe^{(x-1)}dx =\left[xe^{(x-1)}\right]_0^1-\int_0^1 e^{(x-1)}\,dx \] Finish this.
You can also practice computing definite integrals using Integration by Parts by using the following Maplet (requires Maple on the computer where this is executed):
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum